태국의 중앙 집중식 및 분산형 폐수 처리장에 대한 수명주기 영향 평가 및 수명주기 비용 평가
Scientific Reports 12권, 기사 번호: 14540(2022) 이 기사 인용
1963년 액세스
측정항목 세부정보
본 연구에서는 수명주기 비용 평가(LCCA)를 사용하여 중앙 집중식(C) 및 분산형(D) 폐수 처리장(WWTP)에 대한 4가지 슬러지 처리 시나리오의 비용 효율성을 조사합니다. 환경에 미치는 영향과 비용은 Stepwise2006을 통해 정량화됩니다. 태국 방콕(2022~2031)에서 환경적으로나 재정적으로 가장 실행 가능한 WWTP 건설 옵션은 LCCA 및 순현재가치(NPV) 측면에서 결정됩니다. D 처리 시나리오의 환경 비용은 C 처리 시나리오의 환경 비용보다 낮습니다. C 및 D 비료 시나리오의 총 환경 비용은 C 및 D 탈수 시나리오보다 낮습니다. C-WWTP의 기능 단위당 순 현금 흐름은 D-WWTP보다 높습니다. C 비료 시나리오는 가장 낮은 LCCA 적자(처리된 배출수 m3당 -5.58 THB2020)로 인해 가장 환경적으로 경제적으로 실행 가능한 처리 시나리오입니다. 따라서 퇴비화는 슬러지 처리에 채택되어야 합니다. 환경적으로나 재정적으로 가장 실행 가능한 WWTP 건설 옵션은 가장 낮은 LCCA 적자(-199억 2,500만 THB2020)와 가장 작은 재정적 손실(NPV = -6309.96백만 THB2020)로 인해 옵션 I(10년 이내에 4개의 C-WWTP 건설)입니다. 본질적으로 수도의 지방 행정부는 2022~2031년 폐수 처리 관리 정책을 수립하는 지침으로 옵션 I을 채택해야 합니다.
급속한 인구 증가와 도시화는 폐수 수집 및 처리에 대한 수요 증가에 기여합니다. 도시화된 지역에서는 가정 폐수를 중앙 집중식(C) 또는 분산식(D) 폐수 처리장(WWTP)에서 수집하고 처리합니다. C-폐수 관리에는 일반적으로 광범위한 하수망, 복잡하고 효율적인 폐수 수집 시스템, 표준 처리 기술 및 높은 처리 효율성이 포함됩니다. 한편, D-폐수 관리에서는 모듈식 하위 시스템을 사용하여 가정 폐수를 수원 근처에서 수집 및 처리하므로 복잡한 하수망 구축이 필요하지 않으며 결과적으로 시스템 유연성이 향상됩니다1.
C-폐수 관리 시스템과 D-폐수 관리 시스템 사이의 투자 결정에는 하수망 공급, 토지 이용 기회, 숙련된 직원의 가용성, 재정 및 기술 능력 등 다양한 요인이 영향을 미칩니다2. 그 결과, 많은 개발도상국에서는 재정적 제약을 고려할 때 D-폐수 관리가 C-폐수 관리에 대한 경제적으로 실행 가능한 대안으로 간주됩니다.
D-폐수 처리 시스템의 건설 및 운영 비용은 모듈식 하위 시스템의 수와 레이아웃에 따라 크게 다릅니다. 게다가, 대규모 모듈식 하위 시스템을 갖춘 D 처리 시스템의 총 비용은 일반적으로 D 처리 시스템의 운영 및 유지 관리 필요성이 낮기 때문에 C 폐수 처리 시스템보다 낮습니다. 또한 잘 설계된 D-모듈식 하위 시스템은 C-폐수 관리에 비해 비용 이점이 있습니다3.
Life cycle thinking focuses on the environmental and socio-economic impacts of a product or service through the entire lifecycle (2022)." href="/articles/s41598-022-18852-y#ref-CR4" id="ref-link-section-d86418223e369"> 4. 전과정 평가(LCA)는 일반적으로 인간 독성, 생태 독성, 지구 온난화, 부영양화 및 자원 고갈과 같은 환경 영향에 중점을 두고 있으며 다음 4단계로 구성됩니다. (1) 시스템 경계 정의, 기능 단위 및 가정, (2) 생명 주기 목록(LCI), (3) 전과정 영향 평가(LCIA), (4) 해석5,6. 경제적 영향의 경우, 생애주기비용(LCC)에서는 순현금흐름, 즉 수익과 지출의 원천을 고려하고, 생애주기비용평가(LCCA)에서는 LCC와 환경비용을 고려합니다7.
LCC(Life Cycle Cost) 개념을 통합한 기존 LCA 연구는 표 1에 나열되어 있습니다. 기본적으로 기존 연구는 주로 중앙 집중식 폐수 처리 시스템에 중점을 두고 있습니다(예: Awad et al.8, Tabesh et al.9, Polruang et al. .10, Bertanza 외.11. 한편, Lorenzo-Toja et al.12, Lorenzo-Toja et al.13은 LCA와 LCC 측면에서 C- 및 D-폐수 처리 시스템을 모두 조사했습니다.
The 2016–2017 average inventory data of the centralized (i.e., C-dewatering and C-fertilizer) and decentralized sludge treatment scenarios (D-dewatering and D-fertilizer) are also respectively provided in Fig. 2 and Table SI-1 of Supplementary Information (SI) (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e1529"24. In the analysis, this study focuses on the existing eight centralized WWTPs and seven (out of 12) decentralized WWTPs due to either the temporary closure of the remaining decentralized WWTPs for renovation or a lack of data. The average capacity of the centralized and decentralized WWTPs are 139,000 and 2357 m3 per day, respectively. The useful life of the WWTP and sewer network systems are assumed to 30 years./p> In the decomposition, 70% sludge and 30% organic matter are composted by the windrow method to improve the quality of compost (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e1562"24. According to Seleiman et al28, sludge contains 25.77, 12.98, and 3.40 g of nitrogen, phosphorus, and potassium per kg dry matter./p> The environmental costs are determined by Stepwise monetary weighting factors that detail in Table SI-3 of SI29,30 and converted into the year 2020 Thai currency (THB2020) (2020)." href="/articles/s41598-022-18852-y#ref-CR31" id="ref-link-section-d86418223e1594"31 using purchasing power parity (PPP) (i.e., PPPUS$2002 and PPPTHB2002) and Thailand's gross domestic product (GDP) deflator index of 2002 and 2020. The details of currency conversion are provided in Table SI-4 of SI./p> In the LCCA, the source of revenue (or cash inflow) is the sale of decomposed sludge fertilizer which is priced at 2 THB/kg. For the expenditures (or cash outflow), the construction costs, including the costs of collection system, treatment plant, and dewatering system, are gleaned from publicly available data and prior publications34,35,36. The operation and maintenance (O&M) costs include the costs of electricity, water supply, chemical reagents, sludge treatment, and administrative overheads, e.g., wage, management fee (Department of Drainage and Sewerage (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e1638"24./p> The construction and O&M costs are converted into the 2020 Thai baht (THB2020) based on the purchasing power parity (PPP) and gross domestic product (GDP) deflator index (2020)." href="/articles/s41598-022-18852-y#ref-CR31" id="ref-link-section-d86418223e1647"31. The PPP and GDP deflator index are used to reconcile differences between the three currencies (US$, EUR and Thai Baht) and multiple time periods./p> The current total capacity of the centralized and decentralized WWTPs in the capital Bangkok is 1,112,000 and 25,000 m3 per day, respectively. The new centralized WWTP in Minburi district is currently under construction and expected to be complete in 2022, with the maximum wastewater treatment capacity of 10,000 m3 per day. In 2021, all the existing WWTPs combined are capable of treating only 68.33% of Bangkok's municipal wastewater, given the per-capita daily wastewater generation of 0.2 m3 (2017)." href="/articles/s41598-022-18852-y#ref-CR37" id="ref-link-section-d86418223e1670"37 and the population of 8.39 million38./p> By 2027, the population of Thailand's capital Bangkok is projected to be 8.48 million, with the wastewater generation of around 1.70 million m3 per day. According to Department of Drainage and Sewerage (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e1683">24,Japan International Cooperation Agency34, it takes two years to construct a centralized WWTP at the cost of 3358.27 million THB2020; and one year for a decentralized WWTP at the cost of 118.95 million THB2020. An annual budget of around 4500 million THB2020 is set aside for the construction of new WWTPs (Department of Drainage and Sewerage (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e1698"24./p> In finance, net present value (NPV) is used in capital budgeting and investment planning to determine the profitability of an investment project. Mathematically, NPV is the present value of the future cash flows, discounted at the required rate of return, minus the initial investment. In this research, the discount rate or required rate of return is 10%, given that the discount rate of public infrastructure projects in developing countries is around 10%39. For the planned WWTPs to be constructed in the capital Bangkok, the sources of revenue are fee from wastewater treatment and sale of decomposed sludge fertilizer, while the expenditures include the O&M and environmental costs, excluding the construction cost since the WWTPs are public infrastructure projects funded from state coffers. The wastewater treatment fee is 2 THB2020 per m3 wastewater (2020)." href="/articles/s41598-022-18852-y#ref-CR40" id="ref-link-section-d86418223e1716"40. This study also assumes that the BMA could collect 80% of the treated wastewater fee./p> Table 2 shows the contribution analysis results in terms of the environmental impacts of the four sludge treatment scenarios (C-dewatering, C-fertilizer, D-dewatering, D-fertilizer). Under all treatment scenarios, electricity consumption contributes negatively to almost all environmental impact categories, except for human toxicity (non-carcinogens), aquatic ecotoxicity, and aquatic eutrophication. Human toxicity (non-carcinogens) and aquatic ecotoxicity are inversely correlated to heavy metals in sludge, while aquatic eutrophication is inversely correlated to effluent quality. Electricity consumption of C-dewatering and C-fertilizer is the main contributor of mineral extraction, while the main contributor of mineral extraction of D-dewatering and D-fertilizer is tap water consumption. The mechanical aeration is responsible for the lion's share of the electricity cost in wastewater treatment10,16,32. The electricity consumption of the centralized treatment scenarios (0.873 kWh/m3 treated wastewater) is greater than the decentralized treatment scenarios (0.363 kWh/m3 treated wastewater). The average electricity consumption of 22 WWTPs in Spain (0.36 kWh/m3 treated wastewater)12 is lower that both centralized and decentralized treatment scenarios of this study. In comparison with Arashiro et al.21, the electricity consumption and sludge of the decentralized treatment in this study is lower. All of the environmental impacts, excluding aquatic eutrophication, of the centralized treatment scenarios are higher than the decentralized treatment scenarios. The aquatic eutrophication of the centralized treatment scenarios is lower than the decentralized treatment scenarios. This is attributable to lower total phosphorus in the effluent of the centralized treatment scenarios (0.73 g total P per m3 treated wastewater), compared to that of the decentralized treatment scenarios (1.52 g total P per m3 treated wastewater). In comparison with dewatering, sludge decomposition (i.e., for fertilizer) generates lower environmental impacts. According to Seleiman et al.28,Kominko et al.41, sludge is rich in nutrients that are beneficial for crop growth without contaminating groundwater and agriculture produce. However, in this current research, the heavy metals in sludge fertilizer, including copper, cadmium and mercury, exceed the regulatory limits on organic fertilizer standards42. To minimize food-related toxicity in human, the authorities thus stipulate that sludge fertilizers should be used in ornamental plants (Department of Drainage and Sewerage (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e1795"24./p> The construction costs of the existing decentralized treatment scenarios are higher than the centralized treatment scenarios since most of the existing decentralized WWTPs in Thailand were constructed more than three decades and have treated wastewater using energy-inefficient technology, e.g., mechanical aerations46. The decentralized treatment scenarios are classified by the demand for electricity as the small general service and the centralized treatment scenarios as the large general service (2018)." href="/articles/s41598-022-18852-y#ref-CR24" id="ref-link-section-d86418223e2686">24. The electricity cost (THB per kWh) of the small general service (or the decentralized treatment scenarios) of 1.21 THB2020 per m3 treated effluent was higher than that of the large general service (or the centralized treatment scenarios) of 0.70 THB2020 per m3 treated effluent (2021)." href="/articles/s41598-022-18852-y#ref-CR47" id="ref-link-section-d86418223e2699"47. The administrative overheads, e.g., wage, management fee, of the decentralized treatment scenarios (6.33 THB2020 per m3 treated effluent) are higher than the centralized treatment scenarios (1.46 THB2020 per m3 treated effluent)./p>